
Self-focusing of partially coherent beams based on complex
screen and split-step Fourier transform methods

Fanglun Yang (杨方伦)1,2,3, Guowen Zhang (张国文)2,3,4*, Xiaoqi Zhang (张笑琪)2,3, Yanli Zhang (张艳丽)2,3,
Ruifeng Wang (王瑞峰)2,3,4, and Jianqiang Zhu (朱健强)2,3**

1 School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
2 Key Laboratory of High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
3 National Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences,
Shanghai 201800, China
4 University of Chinese Academy of Sciences, Beijing 100049, China

*Corresponding author: guowenzhang@siom.ac.cn

**Corresponding author: jqzhu@siom.ac.cn
Received February 14, 2023 | Accepted April 14, 2023 | Posted Online July 10, 2023

The self-focusing phenomenon of partially coherent beams (PCBs) was simulated using the complex screen method com-
bined with the split-step Fourier method to solve the nonlinear Schrödinger equation. Considering the propagation of
Gaussian Schell-model beams in a nonlinear medium as an example, the suppression effects of intensity, propagation dis-
tance, and spatial coherence on small-scale self-focusing were demonstrated. Simulations of overall and small-scale self-
focusing using this method were compared with the existing literature to demonstrate the validity of the method. This
method can numerically analyze the degree of self-focusing in PCBs and advance the study of their nonlinearity.
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1. Introduction

High-power laser drivers play an important role in high-energy,
high-density physics, such as inertial confinement fusion, laser
plasma physics, and laboratory astrophysics. When a high-
power laser propagates in a nonlinear medium, a self-focusing
phenomenon occurs owing to nonlinear effects, which is amajor
factor that limits the laser output power and damages the beam
quality. The Bespalov–Talanov (B-T) theory was the first to pro-
vide a simple and clear explanation of self-focusing filaments of
coherent light[1,2], which was experimentally verified by Bliss in
the 1960s[3,4]. Small-scale self-focusing is themain factor leading
to the deterioration of beam quality and limits the load of the
laser driver[5–7]. Partially coherent beams (PCBs) have been
developed as laser drivers because they suppress nonlinear
effects and improve the uniformity of the optical field[8–18].
To date, much work has been conducted on the propagation
of fully coherent beams in nonlinear media. However, few stud-
ies have focused on PCBs[19–21].
In optical coherence theory[22], the calculation of the

inevitable four-dimensional integrals during the propagation
of PCBs increases the analytical complexity. Coherent modal
representation (CMR)[23,24], pseudo-modal representation

(PMR)[25], and random modal representation (RMR) were
introduced to reduce computational difficulty[26].
RMR primarily refers to the complex screen (CS) method

used to construct PCBs, which can flexibly and reliably represent
various beam distributions of Schell light sources. The random
CS method has great potential for solving the problem of propa-
gating of PCBs in nonlinear media. In 2014, David et al. pro-
posed the Gaussian Schell-model (GSM) beam representation
using the CSmethod and demonstrated its effectiveness by com-
paring it with the GSM constructed by the theoretical
method[27]. In 2015, this method was used to flexibly and con-
veniently simulate PCB fields with various far-field distribu-
tions[28]. In 2017, Wang et al. used the CS method to calculate
and experimentally verify the propagation of partially coherent
crescent-like optical beams in free space and turbulent atmos-
phere[29]. In 2022, Wang et al. extended the CS approach to
the time-frequency domain of Schell-model beams and simu-
lated the computational Schell-model transport in a nonlinear
medium[30] by comparing it with the pulse-by-phase method[31]

to verify the correctness of their method. In addition to the CS
method, an analytical method for the steady-state self-focusing
of the GSM in a nonlinear media was studied by Wang et al. in
2019[32] and extended it to the quasi-steady-state case in
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2020[33]. This theory yields important propagation characteris-
tics of the GSM in nonlinear media under the approximation
that the beams maintain the GSM after passing through it. In
2022, Lu et al. studied the self-focusing property of PCBs with
nonuniform correlation structures in nonlinear media and dem-
onstrated the feasibility of controlling the self-focusing length by
controlling the initial coherence radius[34].
In this study, we propose amethod for numerically solving the

nonlinear Schrödinger (NLS) equation using the randomCS and
split-step Fourier methods, which can be used to calculate the
self-focusing of PCBs in nonlinear media. To demonstrate the
validity of the method, we compare the beam intensity evolution
under the overall self-focusing of the GSM in the proposed and
analytical formula methods[32] and compare the small-scale self-
focusing phenomenon of the GSM and a coherent Gaussian
beam in this study. This method allows the numerical analysis
of the degree of self-focusing of the Schell-model beams, extends
the range of sources for which self-focusing can be calculated,
and is important for assessing the load capability of new
high-power laser drivers using spatially PCBs.

2. Theoretical Model

2.1. Random CS method

The Schell-model beams are expressed in terms of the
cross-spectral density functions W�r1, r2, z�, which can be
expressed as

W�r1, r2, z� = hT�r1, z�T� �r2, z�i = E�r1�E� �r2�μ�r1, r2�: (1)

In the CSmethod[26,27], the PCB is represented by an incoher-
ent superposition of spatially random complex fields. The
instantaneous scalar field (single realization) Tn�r� can be
expressed as the product of the coherent electric field E�r�
and random CS transmittance function ψn�r�,

Tn�r� = E�r�ψn�r�: (2)

Substituting Eq. (2) into Eq. (1), we obtain Eq. (3).

W�r1, r2, z� = E�r1�E� �r2�hψn�r1�ψ �
n�r2�i: (3)

According to Refs. [35,36], the coherence function μ�r1, r2� can
be expressed as

μ�r1, r2� =
Z

p�v� exp�−i�r1 − r2�v�dv, (4)

where p�v� is a non-negative function.

hCn�υ1�C�
n�υ2�i = δ�υ1 − υ2�, (5)

where δ�υ1 − υ2� is the Dirac delta function, andCn�υ� is a white
noise electric field with the properties of Eq. (5). Expressing

ψn�r� in the form of Eq. (6) and substituting Eq. (4), Eq. (5),
and Eq. (6) into Eq. (3), we obtain Eq. (1).

ψn�r� =
Z ���������

p�v�
p

Cn�υ� exp�−i2πr · v�dv: (6)

When the number of complex screens N is sufficiently large,
W�r1, r2, z� can be expressed as

W�r1, r2, z� ≈
1
N

XN
n=1

Tn�r1�T�
n�r2�: (7)

The cross-spectral density function of the GSM is expressed as

W�r1, r2, z� = I0 exp

�
−
r21 � r22
ω2
0

�
exp

�
−
�r1 − r2�2

2ρ20

�
, (8)

where I0 denotes the initial intensity. Using the CS method to
represent the GSM, the coherent electric field, coherence func-
tion, and intensity distribution are given by Eqs. (9), (10), and
(11), respectively.

E�r� = E0 exp

�
−
r2

ω2
0

�
, (9)

μ�r1, r2� =
W�r1, r2, z������������������������������������������������

W�r1, r1, z�W�r2, r2, z�
p = exp

�
−
�r1 − r2�2

2ρ20

�
,

(10)

I�r� = hjT�r�j2i ≈ 1
N

XN
1

jTn�r�j2: (11)

2.2. Propagation of PCBs in a nonlinear Kerr medium

Under the steady-state and standard paraxial approximations,
the NLS equation for PCBs in nonlinear Kerr medium is

�
2ik

∂

∂z
� �∇2

⊥1 − ∇2
⊥2�

�
W�r1, r2, z�

� 2k2
n2�W�r1, r1, z� −W�r2, r2, z��

n0
W�r1, r2, z� = 0, (12)

where∇2
⊥ = ∇2

x � ∇2
y is the transverse Laplace operator and n2 is

the nonlinear refractive index. Usually the equation has no ana-
lytical solution and can be solved numerically by the split-step
Fourier method[37]. The key to solving the above equation using
the split-step Fourier method is two parts: the diffraction part
and the self-focusing effect part.
The diffraction part can be expressed as

2ik
∂

∂z
W�r1, r2, z� � �∇2

⊥1 − ∇2
⊥2�W�r1, r2, z� = 0: (13)

This equation represents the diffraction transport of the
PCBs. The CS method perfectly represents the process and
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has been applied to the transport of PCBs in free space under
atmospheric turbulence[26,27].
The nonlinear part can be expressed as

∂

∂z
W�r1, r2, z�=W�r1, r2, z� × ik

n2�W�r1, r1, z�−W�r2, r2, z��
n0

:

(14)

For a small Δz, Eq. (14) can be expressed as

W�r1, r2, z � Δz�

=W�r1, r2, z� × exp

�
ik
n2�W�r1, r1, z� −W�r2, r2, z��

n0
× Δz

�
:

(15)

The CS rule is calculated as follows:

∂

∂z
Tn�r, z� = ik

n2hjT�r�j2i
n0

Tn�r, z�: (16)

For a small Δz, Eq. (16) can be expressed as

Tn�r, z � Δz� = exp

�
ik
hn2jT�r�j2i

n0
× Δz

�
× Tn�r, z�: (17)

By substituting Tn at r1, r2 into Eq. (2) according to Eq. (17),
we obtain Eq. (15).
In addition, to demonstrate the small-scale self-focusing phe-

nomenon of PCBs, we let the beam first pass through screen
t�x, y� of periodic transmittance as a small-scale modulation
with the following transmittance before solving the NLS
equation[4,38]:

t�x, y� = �1� a × sin�2πf xx��1=2, (18)

where a and f x denote the initial modulation depth of the inten-
sity and modulation period, respectively. The degree of self-
focusing is characterized by the local modulation degree �M�,
where Imax and Imin denote the maximum and minimum inten-
sities in the local area, respectively.

M =
Imax − Imin

Imax � Imin
: �19�

3. Numerical Results and Analysis

In this section, the above theoretical model is used to simulate
the overall and small-scale self-focusing processes of the GSM.
The nonlinear medium was neodymium glass, which is now
extensively used in high-power laser systems. It has a refractive
index (n0) of 1.54 and a nonlinear refractive index (n2) of
1.18 × 10−13 esu. The beam radius �w0� is 4 mm, and C =
w0=ρ0 denotes the ratio of the beam width w0 to the coherence
length ρ0.

First, we calculated the variation in the maximum intensity
for the overall self-focusing of the GSM. Three cases of coherent
beams,C = 2, andC = 3, with an initial intensity of 0.2 GW=cm2

and a length of 4.5 m for the nonlinear medium, were assigned.
The evolution of the maximum intensity of each beam under

overall self-focusing, as calculated using the analytical formula
and CS methods, is shown in Fig. 1. The coherent beam
(NSL) is the numerical solution of the NLS equation using a
coherent Gaussian beam. AF is the analytical formula in
Ref. [32]. CS is the simulation result obtained using the random
complex screen method. As shown in Fig. 1, the AF and CS
methods fit well in all three cases, proving the reliability of
the methods.
Next, the propagation of the coherent Gaussian beam and the

GSM in a nonlinear medium at a certain intensity after the per-
turbation were simulated. The simulation method for the small-
scale self-focusing of coherent beams has been well established
and proven to be correct. Therefore, we included the simulation
of a coherent beam as a reference for comparison with the PCBs.
The length of the nonlinear medium was 400 mm. In the trans-
mittance screen function t�x, y�, a = 0.1, and f x = 11.9=cm.
C = 2, 5, 10, and 20 were set for the GSM, corresponding to
the coherence lengths ρ0 of 2, 0.8, 0.4, and 0.2 mm, respectively.
Thew0 values are all 4 mm. The number of complex screens N is
2000, at which point the coherence function for each case can be
better represented.
Figure 2 represents the intensity distribution of each beam

with an initial intensity of 2.6 GW=cm2 after amplitude modu-
lation and propagation through 400-mm Nd glass medium,
where Figs. 2(a)–2(e) represent the coherent beam, and C = 2,
5, 10, and 20, respectively, and Fig. 2(f) represents the one-
dimensional distribution of each beam at y = 0.
Figure 3 shows the parameter variation of each beam on the

transmission path for an initial intensity of 2.6 GW=cm2.
Figure 3(a) shows the variation in the degree of modulation
on the transmission path, while Fig. 3(b) shows the variation
in the maximum intensity on the transmission path. Figures 4
and 5 are similar to Figs. 2 and 3, except that Figs. 4 and 5

Fig. 1. Comparison of the analytical formula and the CS methods for overall
self-focusing.
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correspond to an initial intensity of 4GW=cm2. The coherence
shown in Figs. 2–5 is the numerical solution to the NLS equation
using a coherent Gaussian beam. In the two cases of the com-
bined initial intensity of 2.6 GW=cm2 and 4GW=cm2, the evo-
lution of the beam distribution, modulation degree, and
maximum intensity of C = 2 and the coherent beam can
coincide more perfectly. This demonstrates the reliability of
the method of solving the NLS equation to some extent.
According to Figs. 3 and 5, the modulation degreeM and the

maximum intensity increase with the diffraction distance when
the initial intensity is the same. The change trends of both
are essentially the same and are close to exponential growth,
which is typical of the small-scale self-focusing effect. This

phenomenon is also observed in PCBs. However, the modula-
tion growth trend differs for each coherent GSM length.
Table 1 summarizes the final modulation degree at various

coherence and initial intensities. Stronger initial intensities yield
higher final modulation degrees. The higher coherence corre-
sponds to the higher final modulation degrees. Therefore, reduc-
ing the initial intensity and coherence can slow the growth of the
modulation degree and maximum intensity and suppress the
self-focusing effect.
At an initial intensity of 4GW=cm2, the final modulation

degree of 0.19 for the C = 20 Gaussian Schell-mode was
73.6% lower than the 0.72 for the coherent beam. This is also
significantly lower than those of the other GSMs. When the

Fig. 2. Beam distribution with the initial intensity of 2.6 GW/cm2 after 400-mm transmission. (a), (b), (c), (d), and (e) correspond to the coherent beam, and C= 2, 5,
10, and 20, respectively. (f) The one-dimensional distribution corresponding to each light field at y = 0.

Fig. 3. Variation of the beam in (a) the modulation system and (b) the maximum intensity at an initial intensity of 2.6 GW/cm2.
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initial intensity is 2.6 GW=cm2, the modulation degree even
decreases from 0.1 to the final 0.09. In this case, the diffraction
effect surpasses self-focusing, and small-scale perturbations
appear as spatial diffusion.

4. Conclusion

This study presents a method for calculating the transmission of
spatially PCBs in a nonlinear media using the CS method com-
bined with the split-step Fourier method, which solves the prob-
lem of the transmission of PCBs in a nonlinear Kerr media. The
evolution of the overall self-focused maximum intensity of the
GSM was compared using the CS and the analytical formula
methods, which verified the effectiveness of the method.
Simulations of the nonlinear propagation of the GSM with
modulation demonstrated the effects of factors such as spatial
coherence, intensity, and transmission distance on the modula-
tion degree of self-focusing. The simulation results showed that
small-scale self-focusing also occurred in PCBs. However, low

Fig. 4. Beam distribution with the initial intensity of 4 GW/cm2 after 400-mm transmission. (a), (b), (c), (d), and (e) correspond to the coherent beam, and C = 2, 5, 10,
and 20, respectively. (f) The one-dimensional distribution corresponding to each light field at y = 0.

Fig. 5. Variation of the beam in (a) the modulation system and (b) the maximum intensity at an initial intensity of 4 GW/cm2.

Table 1. Modulation Degree M after Propagating through 400-mm Nd Glass.

Coherent C = 2 C = 5 C = 10 C = 20

2.6 GW/cm2 0.37 0.35 0.33 0.19 0.09

4 GW/cm2 0.72 0.70 0.66 0.46 0.19

Chinese Optics Letters Vol. 21, No. 7 | July 2023

071901-5



spatial coherence can suppress the degree of self-focusing.When
the GSM coherence was high, the small-scale self-focusing
behavior was very similar to that of the coherent beam, which
laterally reflected the effectiveness of the CS method.
This method facilitates a quantitative analysis of the overall

and small-scale self-focusing degree of the Schell-model beams
and is expected to establish a theory applicable to the modula-
tion instability of PCBs in nonlinear media, which is of great sig-
nificance for designing the seed source of high-power PCB laser
devices and evaluating the load capacity.
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